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Chapter 1

Scope

The AMR incompressible Navier-Stokes (AMRINS) code developed for this project builds
heavily on the Chombo infrastructure. [CGL+00] The software test plan outlined in this
document will focus on the functionality developed for the Navier-Stokes code; since
Chombo has its own software test plan, it is not necessary to provide for testing the
functionality of the Chombo libraries themselves. Note, however, that since the software
developed for the AMRINS project uses the Chombo functionality so extensively, changes
and bugs in the Chombo libraries will tend to have effects on the AMRINS testing results.
AMRINS developers are kept abreast of developments in Chombo through CVS notifica-
tion (which sends e-mail whenever a change is made in the Chombo CVS version-control
repositories), and through the ChomboUsers e-mail list.

1.1 System Overview

The AMRINS software implements an AMR algorithm for solving the incompressible
Navier-Stokes equations. The algorithm used in this work is based on the inviscid al-
gorithm presented in [MC00].
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Chapter 2

Reference Documents

In addition to the Chombo design document [CGL+00] and the inviscid algorithm described
in [MC00], we will also refer to the “Incompressible Navier-Stokes Software Design” and
“Incompressible Navier-Stokes Requirements” documents.
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Chapter 3

Software Test Environment

The AMRINS software, linked to the Chombo software libraries, current in the ANAG CVS
repository on August 1, 2002 is being tested. As new functionality is added and current
functionality is improved, testing will continue. It is expected that a given time, the
AMRINS code will be in sync with the current state of the Chombo libraries.

This software is primarily intended for use on UNIX/Linux-based systems. In general,
the makefiles used in both Chombo and AMRINS require GNU make (gmake). The
software itself is designed to be run from a shell, with an inputs file providing run-specific
inputs. For data output, the software uses hdf5, so the system must have hdf5-1.4.1
installed. The Chombo and AMRINS software is written in C++ and Fortran77, so working
C++ and F77 compilers must be available. We generally use the GNU compiler: both gcc
2.95 and 3.1 have been successfully used to compile this code. In addition, the Chombo
Fortran preprocessor uses PERL. If ChomboVis will be used to examine results, then it
must be installed as well. ChomboVis additionally requires Python and VTK.

We have tested the AMRINS/Chombo combination in a variety of environments, with
a variety of compilers. Table 3 lists the platforms and compilers we have successfully
compiled and run the AMRINS code:

Testing is done by ANAG personnel, although collaborators have been useful for finding
unintended functionality, primarily in the Chombo libraries themselves.

Platform OS C++ Compiler Fortran Compiler
CRAY T3E unicos KCC 3.3d Cray Fortran 3.5.0.4
IBM SP AIX KCC 4.0f, xlC 5.0.2.0 IBM XL Fortran 7.1.1.0

Pentium/AMD Linux gcc 2.95.3+, g77 2.95.3+, PGI Fortran 3.3-2
Intel C++ 6.0 Intel Fortran 5.0.1

Compaq OSF gcc 3.1 Compaq f77 X5.4A-1684-46B5P
Compaq Linux gcc 2.95.3 g77 2.95.3

SGI IRIX MIPS Pro CC 7.3.1.2m, gcc 2.95.3 MIPS Pro f90 7.3.1.2m

Table 3.1: Platforms and compilers on which the AMRINS code has been tested
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Chapter 4

Test Identification

4.1 General Information

In general, the best way to test whether components are functioning properly is to do a
convergence study. For example, in the case of a projection component, a velocity field
is initialized on a series of meshes, each a factor of 2 finer than the last. The projection
is applied to the velocity field, and then the divergence of the resulting velocity field is
computed. If the projection component is properly implemented, the divergence should
decrease at second-order rates.

4.1.1 Test Level

In general, most of the testing outlined in this document will be component testing.
System-level testing will also be carried out on the entire AMRINS code. It is expected
that integration testing is not necessary at this time, because of the small size of the
design team.

4.1.2 Test Classes

In general, testing will be structured to evaluate correctness of the code. It is anticipated
that since the next phases of code development will be focused on performance enhance-
ment, that performance of the code will be monitored closely, so routine performance
testing should be unnecessary, while testing for correctness will be important as changes
are made to speed up the code.

4.2 Planned Tests

In this section, we outline the tests planned for the AMRINS code, broken down by
functional algorithm unit. All testing codes are written in C++.
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4.2.1 Test 1 – Advection

The second-order upwind method used for the hyperbolic advection pieces of the algorithm
(steps 1a, 2a, and 3a in the pseudocode description of the algorithm) will be tested to
ensure that it maintains second-order accuracy in space and time. This will be a functional
test.

In the next phase of AMRINS development, we expect to factor this functional unit out
of the AMRNavierStokes class in order to use the general hyperbolic tracing capability
of the PatchGodunov class (currently in Chombo/example/AMRGodunovUnsplit/src in
the Chombo distribution).

Once that is done, a testing module will be implemented to use a test advection
problem to ensure that the advection code is second-order accurate and maintains that
accuracy.

4.2.2 Test 2 – Advection-velocity (MAC) Projection

The CCProjector::levelMacProject function applies a staggered-grid projection to a
staggered-grid set of advection velocities. Since the discretization used in this projec-
tion is not approximate, the divergence of the input velocity field after the projection is
applied is solely dependent on the tolerance of the solver used. Because of this, it will be
possible to do a single test of the projection, rather than a convergence study.

The testMacProjection code will initialize a velocity field on a representative disjoint
set of grids. This velocity field will have a divergence-free component as well as a potential
component. When this velocity field is projected by the CCProjector::levelMacProjection
function, the divergence of the resulting velocity field should be at roundoff.

4.2.3 Test 3 – Viscous solver

Currently, the viscous solver is hard-coded in the AMRNavierStokes class. In the next
phase of AMRINS development, we expect to factor the viscous solver as a functional unit
out of the AMRNavierStokes class to be replaced by a generalized viscous solver class.
In conjunction with this effort, a baseline advection-diffusion code is being developed.
Smooth scalar fields advected by this code should maintain second-order accuracy in
space and time. This is currently in development, and should be implemented by the next
milestone report.

4.2.4 Test 4 – Cell-centered single-level projection

To test the CCProjector::levelProject function, the testCCProjector test code was
written. A cell-centered velocity field is initialized to be a divergence-free field (in this
case a vortex) to which a potential field is added. Since this projection discretization is
approximate, applying the levelProject function should remove the potential field with
a second-order accuracy. To test this, the projection is applied to a series of refined grids,
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and the divergence of the resulting velocity field should converge to 0 at second-order
rates.

4.2.5 Test 5 – Cell-centered multilevel projection

The composite cell-centered multilevel projection used in the CCProjector::initialVelocityProject
and CCProjector::doSyncProjection should, like the single-level cell-centered pro-
jection in CCProjector::levelProject, remove a potential field from a cell-centered
velocity field with second-order accuracy. The test for this function is similar to that test
# 4, except it is done on a hierarchy of refined grids.

4.2.6 Test 6 – AMRINS system

The AMRINS code, when run on a smooth initial velocity field, should produce results
which converge at second-order rates. Also, diagnostics are generally monitored through-
out runs to ensure that the code is functioning properly. For example, maximum errors in
the freestream preservation quantity Λ are generally reported at every timestep, and can
be monitored to ensure that the freestream preservation correction is functioning properly.

4.2.7 Test 7 – AMRINS system regression test

. To ensure that Chombo library changes, bug fixes, and related code changes do not cause
unintended changes in code results, an AMRINS system regression test will be employed.
The AMRINS code is run with the benchmark inputs file (a detailed description of the
benchmark problem and the inputs to it may be found in the Baseline Performance docu-
ment), and two diagnostic quantities are reported at the end of the run – the total number
of cells updated, and the integral of the kinetic energy over the problem domain. Changes
in these diagnostic quantities will indicate changes which will need to be investigated.
The total number of cells updated in the run is sensitive to changes in the AMR grid
hierarchy during the run, while the integral of the kinetic energy is sensitive to changes in
the solution itself.
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Chapter 5

Test Schedules

Once a capability in the code has been verified by the appropriate test, we plan to use
these tests as regression tests. We plan to apply the entire test suite once each month to
ensure that no unintended changes are introduced, and we also will re-run the test suite
after bugs are found and corrected to ensure that new bugs are not introduced.

The AMRINS system regression test (Test 7) will be done weekly for serial runs, and
monthly for the suite of parallel runs, and also after bug fixes and library changes to lessen
the possibility of unintended changes in the code.

Also, acceptance tests will be run as stakeholders take possession of the software.
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Chapter 6

Bug Tracking

The AMRINS developers (and the Chombo developers) use the ttpro system for bug track-
ing. When a bug or unexpected behavior in the code is identified, a description is entered
in the ANAG ttpro database. As the bug is investigated and fixed, the description is
updated and expanded. Once a bug has been fixed, the bug report is “closed” in ttpro,
but it remains in the database for future reference if needed. Also, after a bug fix, the
regression test (Test # 7) is re-run to ensure that no unanticipated effects have been
added.
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Chapter 7

Requirements Traceability

The requirements traceability matrix is presented in Figure 7.1.
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Table 7.1: Requirements Traceability Matrix
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